skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pyne, Ted"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We provide compelling evidence for the potential of hardness-vs.-randomness approaches to make progress on the long-standing problem of derandomizing space-bounded computation. Our first contribution is a derandomization of bounded-space machines from hardness assumptions for classes of uniform deterministic algorithms, for which strong (but non-matching) lower bounds can be unconditionally proved. We prove one such result for showing that BPL=L “on average”, and another similar result for showing that BPSPACE[O(n)]=DSPACE[O(n)]. Next, we significantly improve the main results of prior works on hardness-vs.-randomness for logspace. As one of our results, we relax the assumptions needed for derandomization with minimal memory footprint (i.e., showing BPSPACE[S]⊆ DSPACE[c · S] for a small constant c), by completely eliminating a cryptographic assumption that was needed in prior work. A key contribution underlying all of our results is non-black-box use of the descriptions of space-bounded Turing machines, when proving hardness-to-randomness results. That is, the crucial point allowing us to prove our results is that we use properties that are specific to space-bounded machines. 
    more » « less